Electrochemical Immunosensor Based on Polythionine/Gold Nanoparticles for the Determination of Aflatoxin B1
An aflatoxin B1 (AFB1) electrochemical immunosensor was developed by the immobilisation of aflatoxin B1-bovine serum albumin (AFB1-BSA) conjugate on a polythionine (PTH)/gold nanoparticles (AuNP)-modified glassy carbon electrode (GCE). The surface of the AFB1-BSA conjugate was covered with horseradi...
Gespeichert in:
Veröffentlicht in: | Sensors (Basel, Switzerland) Switzerland), 2008-12, Vol.8 (12), p.8262-8274 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An aflatoxin B1 (AFB1) electrochemical immunosensor was developed by the immobilisation of aflatoxin B1-bovine serum albumin (AFB1-BSA) conjugate on a polythionine (PTH)/gold nanoparticles (AuNP)-modified glassy carbon electrode (GCE). The surface of the AFB1-BSA conjugate was covered with horseradish peroxidase (HRP), in order to prevent non-specific binding of the immunosensors with ions in the test solution. The AFB1 immunosensor exhibited a quasi-reversible electrochemistry as indicated by a cyclic voltammetric (CV) peak separation (ΔEp) value of 62 mV. The experimental procedure for the detection of AFB1 involved the setting up of a competition between free AFB1 and the immobilised AFB1-BSA conjugate for the binding sites of free anti-aflatoxin B1 (anti-AFB1) antibody. The immunosensor’s differential pulse voltammetry (DPV) responses (peak currents) decreased as the concentration of free AFB1 increased within a dynamic linear range (DLR) of 0.6 - 2.4 ng/mL AFB1 and a limit of detection (LOD) of 0.07 ng/mL AFB1. This immunosensing procedure eliminates the need for enzyme-labeled secondary antibodies normally used in conventional ELISA–based immunosensors. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s8128262 |