Current Progress in the Rejuvenation of Aging Stem/Progenitor Cells for Improving the Therapeutic Effectiveness of Myocardial Repair

Ischemic heart disease affects a majority of people, especially elderly patients. Recent studies have utilized autologous adult stem/progenitor cells as a treatment option to heal cardiac tissue after myocardial infarction. However, donor cells from aging patients are more likely to be in a senescen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stem cells international 2018-01, Vol.2018 (2018), p.1-9
Hauptverfasser: Kaur, Gurleen, Cai, Chuanxi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ischemic heart disease affects a majority of people, especially elderly patients. Recent studies have utilized autologous adult stem/progenitor cells as a treatment option to heal cardiac tissue after myocardial infarction. However, donor cells from aging patients are more likely to be in a senescent stage. Rejuvenation is required to reverse the damage levied by aging and promote a youthful phenotype. This review aims to discuss current strategies that are effective in rejuvenating aging cardiac stem cells and represent novel therapeutic methods to treat the aging heart. Recent literature mainly focuses on three approaches that aim to reverse cardiac aging: genetic modification, pharmaceutical administration, and optimization of extracellular factors. In vitro genetic modification can be used to overexpress or knock down certain genes and allow for reversal of the aging phenotype. Pharmaceutical administration is another approach that allows for manipulation of signaling pathways related to cell proliferation and cell senescence. Since the stem cell niche can contribute to the age-related decline in stem cell function, rejuvenation strategies also include optimization of extracellular factors. Overall, improving the intrinsic properties of aging stem cells as well as the surrounding environment allows these cells to adopt a phenotype similar to their younger counterparts.
ISSN:1687-966X
1687-9678
1687-9678
DOI:10.1155/2018/9308301