Permutative universal realizability
A list of complex numbers is said to be , if it is the spectrum of a nonnegative matrix. In this paper we provide a new sufficient condition for a given list to be (UR), that is, realizable for each possible Jordan canonical form allowed by . Furthermore, the resulting matrix (that is explicity prov...
Gespeichert in:
Veröffentlicht in: | Special matrices 2021-01, Vol.9 (1), p.66-77 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A list of complex numbers
is said to be
, if it is the spectrum of a nonnegative matrix. In this paper we provide a new sufficient condition for a given list
to be
(UR), that is, realizable for each possible Jordan canonical form allowed by
. Furthermore, the resulting matrix (that is explicity provided) is permutative, meaning that each of its rows is a permutation of the first row. In particular, we show that a real Suleĭmanova spectrum, that is, a list of real numbers having exactly one positive element, is UR by a permutative matrix. |
---|---|
ISSN: | 2300-7451 2300-7451 |
DOI: | 10.1515/spma-2020-0123 |