Permutative universal realizability

A list of complex numbers is said to be , if it is the spectrum of a nonnegative matrix. In this paper we provide a new sufficient condition for a given list to be (UR), that is, realizable for each possible Jordan canonical form allowed by . Furthermore, the resulting matrix (that is explicity prov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Special matrices 2021-01, Vol.9 (1), p.66-77
Hauptverfasser: Soto, Ricardo L., Julio, Ana I., Alfaro, Jaime H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A list of complex numbers is said to be , if it is the spectrum of a nonnegative matrix. In this paper we provide a new sufficient condition for a given list to be (UR), that is, realizable for each possible Jordan canonical form allowed by . Furthermore, the resulting matrix (that is explicity provided) is permutative, meaning that each of its rows is a permutation of the first row. In particular, we show that a real Suleĭmanova spectrum, that is, a list of real numbers having exactly one positive element, is UR by a permutative matrix.
ISSN:2300-7451
2300-7451
DOI:10.1515/spma-2020-0123