Strong Adsorption of Phosphorus by ZnAl-LDO-Activated Banana Biochar: An Analysis of Adsorption Efficiency, Thermodynamics, and Internal Mechanisms
Zn–Al layered bimetallic composites were prepared by ethanol strengthening and co-precipitation using banana straw as a raw material. A high-efficiency phosphorus adsorbent (ZnAl-LDO-BC) was obtained by calcination at a high temperature. The kinetics and thermodynamics of phosphorus adsorption on Zn...
Gespeichert in:
Veröffentlicht in: | ACS omega 2021-03, Vol.6 (11), p.7402-7412 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Zn–Al layered bimetallic composites were prepared by ethanol strengthening and co-precipitation using banana straw as a raw material. A high-efficiency phosphorus adsorbent (ZnAl-LDO-BC) was obtained by calcination at a high temperature. The kinetics and thermodynamics of phosphorus adsorption on ZnAl-LDO-BC were then studied. The results showed that the adsorption process of ZnAl-LDO-BC corresponds with the pseudo-second-order (PSO) kinetic equation and the Langmuir model. The theoretical maximum adsorption capacity of ZnAl-LDO-BC is 111.11 mg/g (at 45 °C, 500 mg/L phosphorus initial concentration). The influence of anions on phosphorus adsorption decreased in strength in the following order: CO3 2– > SO4 2– > NO3 –. Scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), Fourier transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD) were used to characterize the adsorption of phosphorus on ZnAl-LDO-BC and showed that ZnAl-LDO-BC can efficiently adsorb phosphorus. The adsorption mechanism utilizes both O–H and C–H on the surface of ZnAl-LDO-BC for the adsorption of PO4 3–, forming Zn3(PO4)2·4H2O via complexation precipitation; additionally, biochar surface adsorption and interlayer adsorption are indispensable forms of phosphate adsorption. With the systematic study of phosphorus adsorption by ZnAl-LDO-BC, a novel green technology was developed for addressing phosphorus pollution. |
---|---|
ISSN: | 2470-1343 2470-1343 |
DOI: | 10.1021/acsomega.0c05674 |