Role of Txnrd3 in NiCl2-induced kidney cell apoptosis in mice: Potential therapeutic effect of melatonin
Nickel (Ni) exposure is a significant risk factor for kidney dysfunction and oxidative stress injury in humans. Thioredoxin reductase 3 (Txnrd3), an important enzyme in animals, plays a role in maintaining cellular homeostasis and regulating oxidative stress. However, its protective effect against k...
Gespeichert in:
Veröffentlicht in: | Ecotoxicology and environmental safety 2023-10, Vol.265, p.115521-115521, Article 115521 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nickel (Ni) exposure is a significant risk factor for kidney dysfunction and oxidative stress injury in humans. Thioredoxin reductase 3 (Txnrd3), an important enzyme in animals, plays a role in maintaining cellular homeostasis and regulating oxidative stress. However, its protective effect against kidney injury has been determined. Melatonin (Mel) has antioxidant and anti-apoptotic effects and therefore may be a preventive and therapeutic agent for kidney injury. Our study aimed to investigate the roles of Mel and Txnrd3 in the treatment of nickel-induced renal injury. We divided 80 wild-type mice and 80 Txnrd3 -/- mice (C57BL/6 N) into a control group treated with saline, Ni group treated with 10 mg/kg NiCl2, Mel group treated with 2 mg/kg Mel, and Ni + Mel group given NiCl2 and Mel for 21 days. Histopathological and ultrastructural observation of the kidney showed that nuclei were wrinkled and mitochondrial cristae were broken in the Ni group, and these changes were significantly attenuated by Mel treatment. Mitochondrial and nuclear damage improved significantly in the Ni + Mel and Txnrd3-/- Ni + Mel groups. Furthermore, NiCl2 exposure decreased T-AOC, SOD, and GSH activities in the kidney. The decreases in antioxidant enzyme activity were attenuated by Mel, and these improvements were abolished by Txnrd3 knockout. NiCl2-induced increases in the mRNA and protein levels of apoptosis factors (Bax, Cyt-c, caspase-3, and caspase-9) were attenuated by Mel treatment, and Txnrd3 knockout abolished the repressive effect of Mel on apoptosis genes. Overall, we concluded that Mel improves oxidative stress and apoptosis induced by NiCl2 by regulating Txnrd3 expression in the kidney. Our results provide evidence for the role of Mel in NiCl2-induced kidney injury and identify Txnrd3 as a potential therapeutic target for renal injury.
[Display omitted]
•After Txnrd3 knock-out, the kidney apoptosis of mice was more serious under nickel exposure.•Melatonin alleviates kidney apoptosis caused by nickel exposure but the remission effect was attenuated after Txnrd3 knock-out.•Melatonin reduced oxidative stress to prevent nickel-induced kidney damage. |
---|---|
ISSN: | 0147-6513 1090-2414 |
DOI: | 10.1016/j.ecoenv.2023.115521 |