Regional Photovoltaic Power Forecasting Using Vector Autoregression Model in South Korea

Renewable energy forecasting is a key for efficient resource use in terms of power generation and safe grid control. In this study, we investigated a short-term statistical forecasting model with 1 to 3 h horizons using photovoltaic operation data from 215 power plants throughout South Korea. A vect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2022-10, Vol.15 (21), p.7853
Hauptverfasser: Jung, A-Hyun, Lee, Dong-Hyun, Kim, Jin-Young, Kim, Chang Ki, Kim, Hyun-Goo, Lee, Yung-Seop
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Renewable energy forecasting is a key for efficient resource use in terms of power generation and safe grid control. In this study, we investigated a short-term statistical forecasting model with 1 to 3 h horizons using photovoltaic operation data from 215 power plants throughout South Korea. A vector autoregression (VAR) model-based regional photovoltaic power forecasting system is proposed for seven clusters of power plants in South Korea. This method showed better predictability than the autoregressive integrated moving average (ARIMA) model. The normalized root-mean-square errors of hourly photovoltaic generation predictions obtained from VAR (ARIMA) were 8.5–10.9% (9.8–13.0%) and 18.5–22.8% (21.3–26.3%) for 1 h and 3 h horizon, respectively, at 215 power plants. The coefficient of determination, R2 was higher for VAR, at 4–5%, than ARIMA. The VAR model had greater accuracy than ARIMA. This will be useful for economical and efficient grid management.
ISSN:1996-1073
1996-1073
DOI:10.3390/en15217853