Green Synthesis of Silver Nanoparticles Incorporated Aromatherapies Utilized for Their Antioxidant and Antimicrobial Activities against Some Clinical Bacterial Isolates
There is a need to synthesize eco-friendly nanoparticles with more effective and potent antibacterial activities. A green and cost-effective method for the synthesis of silver nanoparticles (AgNPs) using Thymus vulgaris, Mentha piperita, and Zingiber officinale extracts was developed. The analytical...
Gespeichert in:
Veröffentlicht in: | Bioinorganic chemistry and applications 2022, Vol.2022 (1), p.2432758-2432758 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | There is a need to synthesize eco-friendly nanoparticles with more effective and potent antibacterial activities. A green and cost-effective method for the synthesis of silver nanoparticles (AgNPs) using Thymus vulgaris, Mentha piperita, and Zingiber officinale extracts was developed. The analytical instrumentation, namely, UV/Vis, absorption spectroscopy, FTIR, and scanning electron microscopy (SEM), was used to determine the developed AgNPs, confirming the functional groups involved in their reduction. Acidic molybdate, DPPH, and FRAP regents were reacted with AgNPs extract to evaluate their antioxidant, scavenging, and oxidative activities. The agar well diffusion method was used to determine the antibacterial potential of AgNPs extracts using clinical isolates. The developed AgNPs showed peaks at 25 cum\Diff, 50 cum\Diff, and 75 cum\Diff, respectively, of 16.59 ± 0.78, 45.94 ± 1.07, and 81.04 ± 0.98 nm, for Thymus vulgaris, Mentha piperita, and Zingiber officinale. SEM revealed uniform prepared and encapsulated AgNPs by plant extracts matrix. The FTIR shows the involvement of amide (-CO-NH2), carbonyl (-CO), and hydroxyl (-OH), which resulted in the reduction of AgNPs. The AgNPs extract showed significantly higher TAA, DPPH, and FRAP values than free AgNPs and plant extract (p |
---|---|
ISSN: | 1565-3633 1687-479X |
DOI: | 10.1155/2022/2432758 |