The Effect of 3'-Hydroxy-3,4,5,4'-Tetramethoxy -stilbene, the Metabolite of the Resveratrol Analogue DMU-212, on the Motility and Proliferation of Ovarian Cancer Cells

Targeting tumor cell motility and proliferation is an extremely important challenge in the prevention of metastasis and improving the effectiveness of cancer treatment. We recently published data revealing that DMU-214, the metabolite of firmly cytotoxic resveratrol analogue DMU-212, exerted signifi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2020-02, Vol.21 (3), p.1100
Hauptverfasser: Nowicki, Andrzej, Skupin-Mrugalska, Paulina, Jozkowiak, Malgorzata, Wierzchowski, Marcin, Rucinski, Marcin, Ramlau, Piotr, Krajka-Kuzniak, Violetta, Jodynis-Liebert, Jadwiga, Piotrowska-Kempisty, Hanna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Targeting tumor cell motility and proliferation is an extremely important challenge in the prevention of metastasis and improving the effectiveness of cancer treatment. We recently published data revealing that DMU-214, the metabolite of firmly cytotoxic resveratrol analogue DMU-212, exerted significantly higher biological activity than the parent compound in ovarian cancer cells. The aim of the present study was to assess the molecular mechanism of the potential anti-migration and anti-proliferative effect of DMU-214 in ovarian cancer cell line SKOV-3. We showed that DMU-214 reduced the migratory capacity of SKOV-3 cells. The microarray analysis indicated ontology groups of genes involved in processes of negative regulation of cell motility and proliferation. Furthermore, we found DMU-214 triggered changes in expression of several migration- and proliferation-related genes (SMAD7, THBS1, IGFBP3, KLF4, Il6, ILA, SOX4, IL15, SRF, RGCC, GPR56) and proteins (GPR56, RGCC, SRF, SMAD7, THBS1), which have been shown to interact to each other to reduce cell proliferation and motility. Our study showed for the first time that DMU-214 displayed anti-migratory and anti-proliferative activity in SKOV-3 ovarian cancer cells. On the basis of whole transcriptome analysis of these cells, we provide new insight into the role of DMU-214 in inhibition of processes related to metastasis.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms21031100