Innovative Method for the Mass Preparation of α″-Fe16N2 Powders via Gas Atomization
The iron nitride materials, especially α″-Fe16N2, are considered one of the most promising candidates for future rare-earth-free magnets. However, the mass production of α″-Fe16N2 powders as a raw material for permanent magnets is still challenging. In this work, starting from iron lumps as a raw ma...
Gespeichert in:
Veröffentlicht in: | Crystals (Basel) 2023-11, Vol.13 (11), p.1578 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The iron nitride materials, especially α″-Fe16N2, are considered one of the most promising candidates for future rare-earth-free magnets. However, the mass production of α″-Fe16N2 powders as a raw material for permanent magnets is still challenging. In this work, starting from iron lumps as a raw material, we have managed to prepare the α″-Fe16N2 powders via the gas atomization method, followed by subsequent nitriding in an ammonia–hydrogen gas mixture stream. The particle size was controlled by changing the gas atomization preparation conditions. X-ray diffractograms (XRD) analyses show that the prepared powders are composed of α″-Fe16N2 and α-Fe phases. The α″-Fe16N2 volume ratio increases with decreasing powder size and increasing nitriding time, reaching a maximum of 57% α″-Fe16N2 phase in powders with size below 32 ± 3 μm after 96 h nitridation. The saturation magnetization reaches the value of 237 emu/g and a reasonable coercivity value of 884 Oe. Compared to the saturation magnetization values of α-Fe powders, the α″-Fe16N2 powders prepared through our proposed approach show an increase of up to 10% in saturation and demonstrate the possibility of mass production of α″-Fe16N2 powders as precursors of permanent magnets without rare earths. |
---|---|
ISSN: | 2073-4352 2073-4352 |
DOI: | 10.3390/cryst13111578 |