Face Attribute Estimation Using Multi-Task Convolutional Neural Network

Face attribute estimation can be used for improving the accuracy of face recognition, customer analysis in marketing, image retrieval, video surveillance, and criminal investigation. The major methods for face attribute estimation are based on Convolutional Neural Networks (CNNs) that solve face att...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of imaging 2022-04, Vol.8 (4), p.105
Hauptverfasser: Kawai, Hiroya, Ito, Koichi, Aoki, Takafumi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Face attribute estimation can be used for improving the accuracy of face recognition, customer analysis in marketing, image retrieval, video surveillance, and criminal investigation. The major methods for face attribute estimation are based on Convolutional Neural Networks (CNNs) that solve face attribute estimation as a multiple two-class classification problem. Although one feature extractor should be used for each attribute to explore the accuracy of attribute estimation, in most cases, one feature extractor is shared to estimate all face attributes for the parameter efficiency. This paper proposes a face attribute estimation method using Merged Multi-CNN (MM-CNN) to automatically optimize CNN structures for solving multiple binary classification problems to improve parameter efficiency and accuracy in face attribute estimation. We also propose a parameter reduction method called Convolutionalization for Parameter Reduction (CPR), which removes all fully connected layers from MM-CNNs. Through a set of experiments using the CelebA and LFW-a datasets, we demonstrate that MM-CNN with CPR exhibits higher efficiency of face attribute estimation in terms of estimation accuracy and the number of weight parameters than conventional methods.
ISSN:2313-433X
2313-433X
DOI:10.3390/jimaging8040105