Evaluation of Nanofiltration Membranes for the Purification of Monosaccharides: Influence of pH, Temperature, and Sulfates on the Solute Retention and Fouling

Furfural, acetic acid, and sulfates are found in the hemicellulose (HMC) fraction of lignocellulosic biomass. Separation of furfural, acetic acid, and sulfates from monosaccharides by four nanofiltration (NF) membranes was evaluated with a model solution of glucose, xylose, furfural, acetic acid, an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Membranes (Basel) 2022-11, Vol.12 (12), p.1210
Hauptverfasser: Rathnayake, Buddhika, Valkama, Hanna, Ohenoja, Markku, Haverinen, Jasmiina, Keiski, Riitta L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Furfural, acetic acid, and sulfates are found in the hemicellulose (HMC) fraction of lignocellulosic biomass. Separation of furfural, acetic acid, and sulfates from monosaccharides by four nanofiltration (NF) membranes was evaluated with a model solution of glucose, xylose, furfural, acetic acid, and sulfates. Results showed that Alfa Laval NF99HF is the most promising membrane to purify monosaccharides, with the retentions of xylose (85%), glucose (95%), and with the minimum sulfate retention. pH has the highest impact on the retention of all solutes and there is no significant effect of temperature on the retentions of sulphates and acetic acid. Lower pH and temperature are favored to maximize the monosaccharide retention and to remove acetic acid while retaining more furfural with the monosaccharides. Moreover, fouling tendency is maximized at lower pH and higher temperatures. According to the statistical analysis, the retentions of glucose, xylose, furfural, sulfates, and acetic acid are 95%, 90%, 20%, 88%, and 0%, respectively at pH 3 and 25 °C. The presence of sulfates favors the separation of acetic acid and furfural from monosaccharides.
ISSN:2077-0375
2077-0375
DOI:10.3390/membranes12121210