Diel and seasonal variations in the chemical composition of biomass burning aerosol

Fine aerosol particles were collected separately during daytime and nighttime at a tropical pasture site in Rondônia, Brazil, during the burning and dry-to-wet transition period in 2002. Total carbon (TC) and water-soluble organic carbon (WSOC) were measured by evolved gas analysis (EGA). Based on t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmospheric chemistry and physics 2006-08, Vol.6 (11), p.3505-3515
Hauptverfasser: Hoffer, A., Gelencsér, A., Blazsó, M., Guyon, P., Artaxo, P., Andreae, M. O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fine aerosol particles were collected separately during daytime and nighttime at a tropical pasture site in Rondônia, Brazil, during the burning and dry-to-wet transition period in 2002. Total carbon (TC) and water-soluble organic carbon (WSOC) were measured by evolved gas analysis (EGA). Based on the thermochemical properties of the fine aerosol, the relative amounts of the volatile and refractory compounds were estimated. It was found that the thermally refractory (possibly higher molecular weight) compounds dominated the TC composition. Their contribution to TC was higher in the daytime than in the nighttime samples. The relative share of WSOC also showed a statistically significant diel variation as did its refractory fraction. Anhydrosugars and phenolic acids were determined by GC-MS and their diel variation was studied. Based on the decrease of their relative concentrations between the biomass burning and transition periods and their distinctly different diel variations, we suggest that the phenolic acids may undergo chemical transformations in the aerosol phase, possibly towards more refractory compounds (humic-like substances, HULIS), as has been suggested previously. These conclusions are supported by the results of the thermally assisted hydrolysis and methylation gas chromatography-mass spectrometry of the same filter samples.
ISSN:1680-7324
1680-7316
1680-7324
DOI:10.5194/acp-6-3505-2006