Role of Long Non-coding RNAs on Bladder Cancer

LncRNAs interacted with proteins in BC. (A) UCA1 interacts with C/EBPα. (B) Lnc-LBCS directly binds to hnRNPK and EZH2, and inhibits SOX2 transcription. (C) XIST-TET1-p53 pathway in BC. (D) DGCR5 promotes P21 transcription via interacting with ARID1A. (E) LSINCT5 promotes tumor progression by intera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in cell and developmental biology 2021-08, Vol.9, p.672679-672679
Hauptverfasser: Li, Hui-Jin, Gong, Xue, Li, Zheng-Kun, Qin, Wei, He, Chun-Xia, Xing, Lu, Zhou, Xin, Zhao, Dong, Cao, Hui-Ling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:LncRNAs interacted with proteins in BC. (A) UCA1 interacts with C/EBPα. (B) Lnc-LBCS directly binds to hnRNPK and EZH2, and inhibits SOX2 transcription. (C) XIST-TET1-p53 pathway in BC. (D) DGCR5 promotes P21 transcription via interacting with ARID1A. (E) LSINCT5 promotes tumor progression by interacting with NCYM, and inhibiting GSK3β activity and promoting Wnt/β-catenin signaling activation. (F) GAS5 inhibits EZH2 transcription by interacting with E2F4. (G) AWPPH promotes cell proliferation, autophagy, and migration through binding to SMAD4 via EZH2. P indicates promoter. (H) LNMAT1 regulates CCL2 expression through interaction with hnRNPL. Protein-RNA interactions are important aspects of many cellular functions, and lncRNAs are involved in modulating BC through different molecular mechanisms, including binding to one or more protein partners. Bladder cancer (BC) is the most common malignant tumor in the urinary system, and its early diagnosis is conducive to improving clinical prognosis and prolonging overall survival time. However, few biomarkers with high sensitivity and specificity are used as diagnostic markers for BC. Multiple long non-coding RNAs (lncRNAs) are abnormally expressed in BC, and play key roles in tumorigenesis, progression and prognosis of BC. In this review, we summarize the expression, function, molecular mechanisms and the clinical significance of lncRNAs on bladder cancer. There are more than 100 dysregulated lncRNAs in BC, which are involved in the regulation of proliferation, cell cycle, apoptosis, migration, invasion, metabolism and drug resistance of BC. Meanwhile, the molecular mechanisms of lncRNAs in BC was explored, including lncRNAs interacting with DNA, RNA and proteins. Additionally, the abnormal expression of thirty-six lncRNAs is closely associated with multiple clinical characteristics of BC, including tumor size, metastasis, invasion, and drug sensitivity or resistance of BC. Furthermore, we summarize some potential diagnostic and prognostic biomarkers of lncRNA for BC. This review provides promising novel biomarkers in early diagnosis, prognosis and monitoring of BC based on lncRNAs.
ISSN:2296-634X
2296-634X
DOI:10.3389/fcell.2021.672679