Tunable Chemical Grafting of Three-Dimensional Poly (3, 4-ethylenedioxythiophene)/Poly (4-styrenesulfonate)-Multiwalled Carbon Nanotubes Composite with Faster Charge-Carrier Transport for Enhanced Gas Sensing Performance

The three-dimensional volumetric application of conductive poly (3,4-ethylenedioxythiophene)/poly (4-styrenesulfonate) (PEDOT:PSS) to multiwalled carbon nanotubes (MWCNTs) has not been widely reported. In this study, the applicability of the 3D PEDOT:PSS-MWCNT composite for a gas sensor was investig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2020-04, Vol.20 (9), p.2470
Hauptverfasser: Kim, Hyojae, Jang, Yeongseok, Lee, Gyeong Won, Yang, Seung Yun, Jung, Jinmu, Oh, Jonghyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The three-dimensional volumetric application of conductive poly (3,4-ethylenedioxythiophene)/poly (4-styrenesulfonate) (PEDOT:PSS) to multiwalled carbon nanotubes (MWCNTs) has not been widely reported. In this study, the applicability of the 3D PEDOT:PSS-MWCNT composite for a gas sensor was investigated with different PEDOT:PSS concentrations. The gas-sensing performance of the 3D PEDOT:PSS-MWCNT composites was investigated using ethanol and carbon monoxide (CO) gas. Overall, in comparison with the pristine MWCNTs, as the PEDOT:PSS concentration increased, the 3D PEDOT:PSS-MWCNT composites exhibited increased conductivity and enhanced gas sensing performances (fast response and recovery times) to both ethanol and CO gases. Importantly, although the PEDOT:PSS coating layer reduced the number of sites for the adsorption and desorption of gas molecules, the charge-carrier transport between the gas molecules and MWCNTs was significantly enhanced. Thus, PEDOT:PSS can be chemically grafted to MWCNTs to enhance the connectivity and conductivity of a 3D network, leading to possible applications in gas sensors.
ISSN:1424-8220
1424-8220
DOI:10.3390/s20092470