Application of convolution neural networks for critical frequency fₒF2 prediction
Ionosphere has an important impact on the quality of radio communication, radar, and global positioning. One of the essential characteristics describing the state of the ionosphere is its critical frequency fₒF2. Its prediction provides effective modes of operation of technical radio equipment as we...
Gespeichert in:
Veröffentlicht in: | Solar-terrestrial physics 2023-01, Vol.9 (1), p.56-67 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ionosphere has an important impact on the quality of radio communication, radar, and global positioning. One of the essential characteristics describing the state of the ionosphere is its critical frequency fₒF2. Its prediction provides effective modes of operation of technical radio equipment as well as enables calculation of the corrections needed to improve the accuracy of its functioning. Different physical and empirical models are generally used for fₒF2 prediction. This paper proposes an empirical prediction technique based on machine learning methods and observational history. It relies on a regression approach to the prediction based on the known daily quasi-periodicity of ionospheric parameters related to solar illumination. Algorithmically, this approach is implemented in the form of convolutional neural networks with two-dimensional convolution. The input data for the analysis is presented as two-dimensional solar time — date matrices. The model was trained on data from the mid-latitude ionosonde in Irkutsk (RF) and tested using data from several mid-latitude ionosondes: Arti (RF), Warsaw (Poland), Mohe (China). It is shown that the main contribution to the prediction value of fₒF2 is made by the data on the nearest few days before the prediction; the contribution of the remaining days strongly decreases. This model has the following forecast quality metrics (Pearson correlation coefficient 0.928, root mean square error 0.598 MHz, mean absolute error in percent 10.45 %, coefficient of determination 0.861) and can be applied to fₒF2 forecast in middle latitudes. |
---|---|
ISSN: | 2500-0535 2500-0535 |
DOI: | 10.12737/stp-91202307 |