The effect of dosage on the protective efficacy of whole-sporozoite formulations for immunization against malaria

Immunization with Plasmodium sporozoites, either attenuated or administered under the cover of an antimalarial drug, can induce strong protection against malaria in pre-clinical murine models, as well as in human trials. Previous studies have suggested that whole-sporozoite (WSpz) formulations based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:npj vaccines 2023-11, Vol.8 (1), p.182-182, Article 182
Hauptverfasser: Moita, Diana, Rôla, Catarina, Nunes-Cabaço, Helena, Nogueira, Gonçalo, Maia, Teresa G., Othman, Ahmad Syibli, Franke-Fayard, Blandine, Janse, Chris J., Mendes, António M., Prudêncio, Miguel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Immunization with Plasmodium sporozoites, either attenuated or administered under the cover of an antimalarial drug, can induce strong protection against malaria in pre-clinical murine models, as well as in human trials. Previous studies have suggested that whole-sporozoite (WSpz) formulations based on parasites with longer liver stage development induce higher protection, but a comparative analysis of four different WSpz formulations has not been reported. We employed a rodent model of malaria to analyze the effect of immunization dosage on the protective efficacy of WSpz formulations consisting of (i) early liver arresting genetically attenuated parasites (EA-GAP) or (ii) radiation-attenuated sporozoites (RAS), (iii) late arresting GAP (LA-GAP), and (iv) sporozoites administered under chemoprophylaxis, that are eliminated upon release into the bloodstream (CPS). Our results show that, unlike all other WSpz formulations, EA-GAP fails to confer complete protection against an infectious challenge at any immunization dosage employed, suggesting that a minimum threshold of liver development is required to elicit fully effective immune responses. Moreover, while immunization with RAS, LA-GAP and CPS WSpz yields comparable, dosage-dependent protection, protection by EA-GAP WSpz peaks at an intermediate dosage and markedly decreases thereafter. In-depth immunological analyses suggest that effector CD8+ T cells elicited by EA-GAP WSpz immunization have limited developmental plasticity, with a potential negative impact on the functional versatility of memory cells and, thus, on protective immunity. Our findings point towards dismissing EA-GAP from prioritization for WSpz malaria vaccination and enhance our understanding of the complexity of the protection elicited by these WSpz vaccine candidates, guiding their future optimization.
ISSN:2059-0105
2059-0105
DOI:10.1038/s41541-023-00778-9