Transcriptome analysis of the effect of diosgenin on autoimmune thyroiditis in a rat model

In a mouse model of Graves’ disease (GD), diosgenin has been shown to have a therapeutic effect on GD by alleviating goitre. However, research on the effect of diosgenin on autoimmune thyroiditis (AIT) is lacking. In this study, transcriptomics was used to comprehensively analyse the protective effe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2021-03, Vol.11 (1), p.6401-6401, Article 6401
Hauptverfasser: Zhang, Chengfei, Qin, Lingling, Sun, Boju, Wu, You, Zhong, Fengying, Wu, Lili, Liu, Tonghua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In a mouse model of Graves’ disease (GD), diosgenin has been shown to have a therapeutic effect on GD by alleviating goitre. However, research on the effect of diosgenin on autoimmune thyroiditis (AIT) is lacking. In this study, transcriptomics was used to comprehensively analyse the protective effect of diosgenin against AIT in rats and the possible mechanism. The results showed that in the diosgenin-intervention group, compared to the model group, the expression of serum triiodothyronine, thyroxine, free triiodothyronine, and free thyroxine was decreased and that of thyroid-stimulating hormone was increased; these changes were accompanied by the downregulation of thyroglobulin, TSH receptor antibody and thyroid peroxidase expression in serum. Furthermore, transcriptome detection, RT-qPCR and immunohistochemistry verification revealed that in thyroid tissue, the relative mRNA and protein expression of cyclic adenosine 3′,5′-monophosphate (cAMP), protein kinase A (PKA) and cAMP response element-binding protein (Creb) were increased and the mRNA expression of S100 calcium-binding protein A9 (S100A9) was decreased in the diosgenin groups. In summary, diosgenin alleviates the development of AIT, possibly via the activation of the cAMP/PKA/Creb pathway and downregulation of S100A9 gene expression.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-021-85822-1