The Effect of Carbonate Cement Type on Sandstone Matrix Acidizing

This study aims to numerically determine the roles of the geochemical reactions during the injection of a strong acid into a sandstone sample. As a case study, we used laboratory results of hydrochloric acid (HCl) injection into a sandstone core plug sample from the literature. As the exact cement c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical and petroleum engineering (Online) 2022-12, Vol.56 (2), p.245-255
Hauptverfasser: Hossein Younesian-Farid, Saeid Sadeghnejad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study aims to numerically determine the roles of the geochemical reactions during the injection of a strong acid into a sandstone sample. As a case study, we used laboratory results of hydrochloric acid (HCl) injection into a sandstone core plug sample from the literature. As the exact cement composition of the implemented sandstone was not available, two probable cement compositions were considered (i.e., calcite and dolomite cement). A fully-implicit model, coded in Python, was used to simulate the underlying geochemical reactions during the HCl injection (i.e., equilibrium and kinetical reactions). In addition, the reactive surface area and porosity-permeability changes of the rock sample were included in the model. The modelling results show that dolomite cement matched better than calcite cement with the experimental acidizing data. A perfect effluent pH prediction was therefore achieved when the reactive surface area was considered as a function of mineral volume fraction. Moreover, a detailed analysis of the dissolution/precipitation rate of different minerals involved in simulations was provided. The presented model improves our understanding of sandstone acidizing by determining dominant reactions.
ISSN:2423-673X
2423-6721
DOI:10.22059/JCHPE.2022.331409.1363