Circulating N-Acetylaspartate does not track brain NAA concentrations, cognitive function or features of small vessel disease in humans

N-acetylaspartate (NAA) is the second most abundant metabolite in the human brain; although it is assumed to be a proxy for a neuronal marker, its function is not fully elucidated. NAA is also detectable in plasma, but its relation to cerebral NAA levels, cognitive performance, or features of cerebr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2022-07, Vol.12 (1), p.11530-11530, Article 11530
Hauptverfasser: Rebelos, Eleni, Daniele, Giuseppe, Campi, Beatrice, Saba, Alessandro, Koskensalo, Kalle, Ihalainen, Jukka, Saukko, Ekaterina, Nuutila, Pirjo, Backes, Walter H., Jansen, Jacobus F. A., Dagnelie, Pieter C., Köhler, Sebastian, de Galan, Bastiaan E., van Sloten, Thomas T., Stehouwer, Coen D. A., Ferrannini, Ele
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:N-acetylaspartate (NAA) is the second most abundant metabolite in the human brain; although it is assumed to be a proxy for a neuronal marker, its function is not fully elucidated. NAA is also detectable in plasma, but its relation to cerebral NAA levels, cognitive performance, or features of cerebral disease has not been investigated. To study whether circulating NAA tracks cerebral NAA levels, and whether circulating NAA correlates with cognitive function and features of cerebral small vessel disease (SVD). Two datasets were analyzed. In dataset 1 , structural MRI was acquired in 533 subjects to assess four features of cerebral SVD. Cognitive function was evaluated with standardized test scores ( N  = 824). In dataset 2 , brain 1 H-MRS from the occipital region was acquired ( N  = 49). In all subjects, fasting circulating NAA was measured with mass spectrometry. Dataset 1: in univariate and adjusted for confounders models, we found no correlation between circulating NAA and the examined features of cerebral SVD. In univariate analysis, circulating NAA levels were associated inversely with the speed in information processing and the executive function score, however these associations were lost after accounting for confounders. In line with the negative findings of dataset 1 , in dataset 2 there was no correlation between circulating and central NAA or total NAA levels. This study indicates that circulating NAA levels do not reflect central (occipital) NAA levels, cognitive function, or cerebral small vessel disease in man.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-022-15670-0