Generalizing Upper Limb Force Modeling With Transfer Learning: A Multimodal Approach Using EMG and IMU for New Users and Conditions
In the field of EMG-based force modeling, the ability to generalize models across individuals could play a significant role in its adoption across a range of applications, including assistive devices, robotic and rehabilitation devices. However, current studies have predominately focused on intra-su...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on neural systems and rehabilitation engineering 2024, Vol.32, p.391-400 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the field of EMG-based force modeling, the ability to generalize models across individuals could play a significant role in its adoption across a range of applications, including assistive devices, robotic and rehabilitation devices. However, current studies have predominately focused on intra-subject modeling, largely neglecting the burden of end-user data acquisition. In this work, we propose the use of transfer learning (TL) to generalize force modeling to a new user by first establishing a baseline model trained using other users' data, and then adapting to the end-user using a small amount of new data (only 10% , 20% , and 40% of the new user data). Using a deep multimodal convolutional neural network, consisting of two CNN models, one with high-density (HD) EMG and one with motion data recorded by an Inertial Measurement Unit (IMU), our proposed TL technique significantly improved force modeling compared to leave-one-subject-out (LOSO) and even intra-subject scenarios. The TL approach increased the average R squared values of the force modeling task by 60.81%, 190.53%, and 199.79% compared to the LOSO case, and by 13.4%, 36.88%, and 45.51% compared to the intra-subject case for isotonic, isokinetic and dynamic conditions, respectively. These results show that it is possible to adapt to a new user with minimal data while improving performance significantly compared to the intra-subject scenario. We also show that TL can be used to generalize on a new experimental condition for a new user. |
---|---|
ISSN: | 1534-4320 1558-0210 1558-0210 |
DOI: | 10.1109/TNSRE.2024.3351829 |