Bifurcations of an SIRS epidemic model with a general saturated incidence rate
This paper is concerned with the bifurcations of a susceptible-infectious-recovered-susceptible (SIRS) epidemic model with a general saturated incidence rate $ k I^p/(1+\alpha I^p) $. For general $ p > 1 $, it is shown that the model can undergo saddle-node bifurcation, Bogdanov-Takens bifurcatio...
Gespeichert in:
Veröffentlicht in: | Mathematical Biosciences and Engineering 2022-11, Vol.19 (11), p.10710-10730 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper is concerned with the bifurcations of a susceptible-infectious-recovered-susceptible (SIRS) epidemic model with a general saturated incidence rate $ k I^p/(1+\alpha I^p) $. For general $ p > 1 $, it is shown that the model can undergo saddle-node bifurcation, Bogdanov-Takens bifurcation of codimension two, and degenerate Hopf bifurcation of codimension two with the change of parameters. Combining with the results in [1 ] for $ 0 < p\leq 1 $, this type of SIRS model has Hopf cyclicity $ 2 $ for any $ p > 0 $. These results also improve some previous ones in [2 ] and [3 ] , which are dealt with the special case of $ p = 2 $. |
---|---|
ISSN: | 1551-0018 1551-0018 |
DOI: | 10.3934/mbe.2022501 |