Bifurcations of an SIRS epidemic model with a general saturated incidence rate

This paper is concerned with the bifurcations of a susceptible-infectious-recovered-susceptible (SIRS) epidemic model with a general saturated incidence rate $ k I^p/(1+\alpha I^p) $. For general $ p > 1 $, it is shown that the model can undergo saddle-node bifurcation, Bogdanov-Takens bifurcatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical Biosciences and Engineering 2022-11, Vol.19 (11), p.10710-10730
Hauptverfasser: Zhang, Fang, Cui, Wenzhe, Dai, Yanfei, Zhao, Yulin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is concerned with the bifurcations of a susceptible-infectious-recovered-susceptible (SIRS) epidemic model with a general saturated incidence rate $ k I^p/(1+\alpha I^p) $. For general $ p > 1 $, it is shown that the model can undergo saddle-node bifurcation, Bogdanov-Takens bifurcation of codimension two, and degenerate Hopf bifurcation of codimension two with the change of parameters. Combining with the results in [1 ] for $ 0 < p\leq 1 $, this type of SIRS model has Hopf cyclicity $ 2 $ for any $ p > 0 $. These results also improve some previous ones in [2 ] and [3 ] , which are dealt with the special case of $ p = 2 $.
ISSN:1551-0018
1551-0018
DOI:10.3934/mbe.2022501