Brd2/4 and Myc regulate alternative cell lineage programmes during early osteoclast differentiation in vitro

Osteoclast (OC) development in response to nuclear factor kappa-Β ligand (RANKL) is critical for bone homeostasis in health and in disease. The early and direct chromatin regulatory changes imparted by the BET chromatin readers Brd2-4 and OC-affiliated transcription factors (TFs) during osteoclastog...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:iScience 2021-01, Vol.24 (1), p.101989-101989, Article 101989
Hauptverfasser: Caputo, Valentina S., Trasanidis, Nikolaos, Xiao, Xiaolin, Robinson, Mark E., Katsarou, Alexia, Ponnusamy, Kanagaraju, Prinjha, Rab K., Smithers, Nicholas, Chaidos, Aristeidis, Auner, Holger W., Karadimitris, Anastasios
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Osteoclast (OC) development in response to nuclear factor kappa-Β ligand (RANKL) is critical for bone homeostasis in health and in disease. The early and direct chromatin regulatory changes imparted by the BET chromatin readers Brd2-4 and OC-affiliated transcription factors (TFs) during osteoclastogenesis are not known. Here, we demonstrate that in response to RANKL, early OC development entails regulation of two alternative cell fate transcriptional programmes, OC vs macrophage, with repression of the latter following activation of the former. Both programmes are regulated in a non-redundant manner by increased chromatin binding of Brd2 at promoters and of Brd4 at enhancers/super-enhancers. Myc, the top RANKL-induced TF, regulates OC development in co-operation with Brd2/4 and Max and by establishing negative and positive regulatory loops with other lineage-affiliated TFs. These insights into the transcriptional regulation of osteoclastogenesis suggest the clinical potential of selective targeting of Brd2/4 to abrogate pathological OC activation. [Display omitted] •Upregulation of osteoclast lineage commitment TFs occurs
ISSN:2589-0042
2589-0042
DOI:10.1016/j.isci.2020.101989