Mathematical Modeling Study of Pressure Loss in the Flow Channels of Additive Manufacturing Aviation Hydraulic Valves

The application of additive manufacturing in the field of aviation hydraulics greatly improves the design freedom of hydraulic valve internal flow channels. Pressure loss in hydraulic valve internal flow channels is a primary factor that designers need to consider, and the rapid prediction of pressu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2023-02, Vol.16 (4), p.1788
Hauptverfasser: Li, Dongfei, Dai, Ning, Wang, Hongtao, Zhang, Fujun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The application of additive manufacturing in the field of aviation hydraulics greatly improves the design freedom of hydraulic valve internal flow channels. Pressure loss in hydraulic valve internal flow channels is a primary factor that designers need to consider, and the rapid prediction of pressure loss is very helpful for flow channel design. At present, most studies only focus on how much the pressure loss in an additive manufacturing (AM) hydraulic channel is reduced compared with an original hydraulic channel, and a mathematical model of pressure loss in an AM curved channel is still lacking. In this paper, the pressure loss in a curved flow channel was firstly studied, and the main parameters affecting the pressure loss were determined using the dimensionless analysis method. Using computational fluid dynamics simulation, the relationships between the flow channel diameter, the flow channel length, the flow channel curvature radius, the fluid velocity and pressure loss were studied. According to the multiple regression analysis method, the mathematical model of pressure loss in aviation hydraulic channels was developed, and the model was solved based on the orthogonal experimental results. The pressure loss in the flow channel samples fabricated using selective laser melting was tested, and the results showed that the average error between the test results and the mathematical model calculation results was 7.72%. This model can be used to quickly predict the pressure loss in curved flow channels in the aviation hydraulic field.
ISSN:1996-1073
1996-1073
DOI:10.3390/en16041788