Order-Preserving Pattern Matching with Partition
Order-preserving pattern matching, which considers the relative orders of strings, can be applied to time-series data analysis. To perform a more meaningful analysis of time-series data, approximate criteria for the order-isomorphism are necessary, considering diverse types of errors. In this paper,...
Gespeichert in:
Veröffentlicht in: | Mathematics (Basel) 2024-11, Vol.12 (21), p.3381 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Order-preserving pattern matching, which considers the relative orders of strings, can be applied to time-series data analysis. To perform a more meaningful analysis of time-series data, approximate criteria for the order-isomorphism are necessary, considering diverse types of errors. In this paper, we introduce a novel approximation criterion for the order-isomorphism, called the partitioned order-isomorphism. We then propose an efficient O(n+sort(m))-time algorithm for the order-preserving pattern matching problem considering the criterion of partition. A comparative experiment demonstrates that the proposed algorithm is more effective than the exact order-preserving pattern matching algorithm. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math12213381 |