Approximation to Hadamard Derivative via the Finite Part Integral
In 1923, Hadamard encountered a class of integrals with strong singularities when using a particular Green's function to solve the cylindrical wave equation. He ignored the infinite parts of such integrals after integrating by parts. Such an idea is very practical and useful in many physical mo...
Gespeichert in:
Veröffentlicht in: | Entropy (Basel, Switzerland) Switzerland), 2018-12, Vol.20 (12), p.983 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In 1923, Hadamard encountered a class of integrals with strong singularities when using a particular Green's function to solve the cylindrical wave equation. He ignored the infinite parts of such integrals after integrating by parts. Such an idea is very practical and useful in many physical models, e.g., the crack problems of both planar and three-dimensional elasticities. In this paper, we present the rectangular and trapezoidal formulas to approximate the Hadamard derivative by the idea of the finite part integral. Then, we apply the proposed numerical methods to the differential equation with the Hadamard derivative. Finally, several numerical examples are displayed to show the effectiveness of the basic idea and technique. |
---|---|
ISSN: | 1099-4300 1099-4300 |
DOI: | 10.3390/e20120983 |