Design Strategies of Hydrogen Evolution Reaction Nano Electrocatalysts for High Current Density Water Splitting
Hydrogen is now recognized as the primary alternative to fossil fuels due to its renewable, safe, high-energy density and environmentally friendly properties. Efficient hydrogen production through water splitting has laid the foundation for sustainable energy technologies. However, when hydrogen pro...
Gespeichert in:
Veröffentlicht in: | Nanomaterials (Basel, Switzerland) Switzerland), 2024-07, Vol.14 (14), p.1172 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hydrogen is now recognized as the primary alternative to fossil fuels due to its renewable, safe, high-energy density and environmentally friendly properties. Efficient hydrogen production through water splitting has laid the foundation for sustainable energy technologies. However, when hydrogen production is scaled up to industrial levels, operating at high current densities introduces unique challenges. It is necessary to design advanced electrocatalysts for hydrogen evolution reactions (HERs) under high current densities. This review will briefly introduce the challenges posed by high current densities on electrocatalysts, including catalytic activity, mass diffusion, and catalyst stability. In an attempt to address these issues, various electrocatalyst design strategies are summarized in detail. In the end, our insights into future challenges for efficient large-scale industrial hydrogen production from water splitting are presented. This review is expected to guide the rational design of efficient high-current density water electrolysis electrocatalysts and promote the research progress of sustainable energy. |
---|---|
ISSN: | 2079-4991 2079-4991 |
DOI: | 10.3390/nano14141172 |