134Cs Uptake and Growth at Various Cs+ and K+ Levels in Arabidopsis AtKUP7 Mutants

Radiocaesium is a pollutant with a high risk for the environment, agricultural production, and human health. It is mobile in ecosystems and can be taken up by plants via potassium transporters. In this study, we focused on the role of potassium transporter AtKUP7 of the KT/HAK/KUP family in Cs+ and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plants (Basel) 2020-11, Vol.9 (11), p.1525
Hauptverfasser: Šustr, Marek, Doksanská, Tereza, Doležalová, Barbora, Soukup, Aleš, Tylová, Edita
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Radiocaesium is a pollutant with a high risk for the environment, agricultural production, and human health. It is mobile in ecosystems and can be taken up by plants via potassium transporters. In this study, we focused on the role of potassium transporter AtKUP7 of the KT/HAK/KUP family in Cs+ and K+ uptake by plants and in plant tolerance to caesium toxicity. We detected that Arabidopsiskup7 mutant accumulates significantly lower amounts of 134Cs in the root (86%) and in the shoot (69%) compared to the wild-type. On the other hand ability of the mutant to grow on media with toxic (100 and 200 µM) concentrations of Cs+ was not changed; moreover its growth was not impaired on low K+. We further investigated another mutant line in AtKUP7 and found that the growth phenotype of the kup7 mutants in K+ deficient conditions is much milder than previously published. Also, their accumulation of K+ in shoots is hindered only by severe potassium shortage.
ISSN:2223-7747
2223-7747
DOI:10.3390/plants9111525