Review of NMR Studies for Oilwell Cements and Their Importance
This paper summarizes experimental studies using Nuclear Magnetic Resonance (NMR) to evaluate cement porosity, pore size distribution, and other characteristics such as Calcium Silicate Hydrate (CSH) gel structure and morphology. The first known paper on NMR experiments to investigate cement pastes...
Gespeichert in:
Veröffentlicht in: | ChemEngineering 2021, Vol.5 (2), p.18 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper summarizes experimental studies using Nuclear Magnetic Resonance (NMR) to evaluate cement porosity, pore size distribution, and other characteristics such as Calcium Silicate Hydrate (CSH) gel structure and morphology. The first known paper on NMR experiments to investigate cement pastes was published in 1978. Two main NMR parameters, the so-called longitudinal T1 and transverse T2 relaxation times, are commonly measured and analyzed, representing the water response which is trapped in the cement. The hydration process reported in this paper was found to be monitored from as low as 10 min to longer than 365 days. Other studies conducted experiments by using NMR, especially during the 1980s. These studies employed variations in methodologies and frequencies, making data comparison difficult. Additionally, different spectrometers and NMR concepts, as well as operating characteristics, were used. Therefore, it is challenging to reconcile results from previous NMR studies on cement. Other significant hurdles are different cement types, water/cement ratio, and curing conditions. One notable observation is that there has not been any comprehensive laboratory work related to NMR on oilfield cement types, including porosity and hydration. Two recent studies have presented NMR measurements on class G and class H cements. |
---|---|
ISSN: | 2305-7084 2305-7084 |
DOI: | 10.3390/chemengineering5020018 |