Ensemble of Machine-Learning Methods for Predicting Gully Erosion Susceptibility
Gully formation through water-induced soil erosion and related to devastating land degradation is often a quasi-normal threat to human life, as it is responsible for huge loss of surface soil. Therefore, gully erosion susceptibility (GES) mapping is necessary in order to reduce the adverse effect of...
Gespeichert in:
Veröffentlicht in: | Remote sensing (Basel, Switzerland) Switzerland), 2020-11, Vol.12 (22), p.3675 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Gully formation through water-induced soil erosion and related to devastating land degradation is often a quasi-normal threat to human life, as it is responsible for huge loss of surface soil. Therefore, gully erosion susceptibility (GES) mapping is necessary in order to reduce the adverse effect of land degradation and diminishes this type of harmful consequences. The principle goal of the present research study is to develop GES maps for the Garhbeta I Community Development (C.D.) Block; West Bengal, India, by using a machine learning algorithm (MLA) of boosted regression tree (BRT), bagging and the ensemble of BRT-bagging with K-fold cross validation (CV) resampling techniques. The combination of the aforementioned MLAs with resampling approaches is state-of-the-art soft computing, not often used in GES evaluation. In further progress of our research work, here we used a total of 20 gully erosion conditioning factors (GECFs) and a total of 199 gully head cut points for modelling GES. The variables’ importance, which is responsible for gully erosion, was determined based on the random forest (RF) algorithm among the several GECFs used in this study. The output result of the model’s performance was validated through a receiver operating characteristics-area under curve (ROC-AUC), sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) statistical analysis. The predicted result shows that the ensemble of BRT-bagging is the most well fitted for GES where AUC value in K-3 fold is 0.972, whereas the value of AUC in sensitivity, specificity, PPV and NPV is 0.94, 0.93, 0.96 and 0.93, respectively, in a training dataset, and followed by the bagging and BRT model. Thus, from the predictive performance of this research study it is concluded that the ensemble of BRT-Bagging can be applied as a new approach for further studies in spatial prediction of GES. The outcome of this work can be helpful to policy makers in implementing remedial measures to minimize damages caused by gully erosion. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs12223675 |