Periodic solutions to symmetric Newtonian systems in neighborhoods of orbits of equilibria

The aim of this paper is to prove the existence of periodic solutions to symmetric Newtonian systems in any neighborhood of an isolated orbit of equilibria. Applying equivariant bifurcation techniques we obtain a generalization of the classical Lyapunov center theorem to the case of symmetric potent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic Research Archive 2022-01, Vol.30 (5), p.1691-1707
Hauptverfasser: Gołȩbiewska, Anna, Kowalczyk, Marta, Rybicki, Sławomir, Stefaniak, Piotr
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of this paper is to prove the existence of periodic solutions to symmetric Newtonian systems in any neighborhood of an isolated orbit of equilibria. Applying equivariant bifurcation techniques we obtain a generalization of the classical Lyapunov center theorem to the case of symmetric potentials with orbits of non-isolated critical points. Our tool is an equivariant version of the Conley index. To compare the indices we compute cohomological dimensions of some orbit spaces.
ISSN:2688-1594
2688-1594
DOI:10.3934/era.2022085