Magnetic amino-functionalized metal-organic frameworks as a novel solid support in ionic liquids-based effervescent tablets for efficient extraction of polycyclic aromatic hydrocarbons in milks

Herein, a kind of novel multi-layer core-shell nanocomposites (NSPN) was prepared by employing SiO2 and polyvinylpyrrolidone (PVP) polymers as modifiers and amino-functionalized metal-organic frameworks (NH2-MIL101(Fe)) as coating. It was referred to as the NSPN and ILs-based effervescence-assisted...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecotoxicology and environmental safety 2021-10, Vol.222, p.112482-112482, Article 112482
Hauptverfasser: Zhou, Peipei, Wang, Rui, Fan, Ru, Yang, Xiaoran, Mei, He, Chen, Huaiyu, Wang, Huili, Wang, Zhenfeng, Wang, Xuedong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Herein, a kind of novel multi-layer core-shell nanocomposites (NSPN) was prepared by employing SiO2 and polyvinylpyrrolidone (PVP) polymers as modifiers and amino-functionalized metal-organic frameworks (NH2-MIL101(Fe)) as coating. It was referred to as the NSPN and ILs-based effervescence-assisted dispersive solid-phase microextraction, hereafter abbreviated as NIE-DSM. In terms of extraction efficiency, SiO2 and PVP as modifiers and NH2-MIL(Fe) as coating onto the surface of NiFe2O4 cores played a synergistically enhancing effect on adsorption/extraction. Effervescent tablets were prepared by integrating the NSPN magnetic nanoparticles as adsorbents with imidazolium-based ionic liquids (ILs) as extractants as well as acidic and alkaline sources. Under vigorous dispersion of CO2 bubbles, the NIE-DSM method realized the goal of rapidly diffusing and separating the adsorbent/extractant (~3 min) without needing conventional vortexing or centrifugation step. Consequently, the NIE-DSM approach combined dispersion and adsorption/extractant in a synchronous way. Under optimized conditions, the NIE-DSM/HPLC-FLD method gave low limits of detection (0.008–0.034 μg kg−1) and satisfactory extraction recoveries (74.1–101.6%) for five polycyclic aromatic hydrocarbons (PAHs; fluorene, anthracene, pyrene, chrysene and benzo(a)pyrene) in milk samples. The intra-day and inter-day precision, expressed as relative standard deviations, was
ISSN:0147-6513
1090-2414
DOI:10.1016/j.ecoenv.2021.112482