Quantum chaos in 2D gravity
We present a quantitative and fully non-perturbative description of the ergodic phase of quantum chaos in the setting of two-dimensional gravity. To this end we describe the doubly non-perturbative completion of semiclassical 2D gravity in terms of its associated universe field theory. The guiding p...
Gespeichert in:
Veröffentlicht in: | SciPost physics 2023-08, Vol.15 (2), p.064, Article 064 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a quantitative and fully non-perturbative description of the ergodic phase of quantum chaos in the setting of two-dimensional gravity. To this end we describe the doubly non-perturbative completion of semiclassical 2D gravity in terms of its associated universe field theory. The guiding principle of our analysis is a flavor-matrix theory (fMT) description of the ergodic phase of holographic gravity, which exhibits
\mathrm{U}(n|n)
U
(
n
|
n
)
causal symmetry breaking and restoration. JT gravity and its 2D-gravity cousins alone do not realize an action principle with causal symmetry, however we demonstrate that their universe field theory, the Kodaira-Spencer (KS) theory of gravity, does. After directly deriving the fMT from brane-antibrane correlators in KS theory, we show that causal symmetry breaking and restoration can be understood geometrically in terms of different (topological) D-brane vacua. We interpret our results in terms of an open-closed string duality between holomorphic Chern-Simons theory and its closed-string equivalent, the KS theory of gravity. Emphasis will be put on relating these geometric principles to the characteristic spectral correlations of the quantum ergodic phase. |
---|---|
ISSN: | 2542-4653 2542-4653 |
DOI: | 10.21468/SciPostPhys.15.2.064 |