On the connectedness principle and dual complexes for generalized pairs
Let $(X,B)$ be a pair, and let $f \colon X \rightarrow S$ be a contraction with $-({K_{X}} + B)$ nef over S. A conjecture, known as the Shokurov–Kollár connectedness principle, predicts that $f^{-1} (s) \cap \operatorname {\mathrm {Nklt}}(X,B)$ has at most two connected components, where $s \in S$ i...
Gespeichert in:
Veröffentlicht in: | Forum of mathematics. Sigma 2023-01, Vol.11, Article e33 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
$(X,B)$
be a pair, and let
$f \colon X \rightarrow S$
be a contraction with
$-({K_{X}} + B)$
nef over S. A conjecture, known as the Shokurov–Kollár connectedness principle, predicts that
$f^{-1} (s) \cap \operatorname {\mathrm {Nklt}}(X,B)$
has at most two connected components, where
$s \in S$
is an arbitrary schematic point and
$\operatorname {\mathrm {Nklt}}(X,B)$
denotes the non-klt locus of
$(X,B)$
. In this work, we prove this conjecture, characterizing those cases in which
$\operatorname {\mathrm {Nklt}}(X,B)$
fails to be connected, and we extend these same results also to the category of generalized pairs. Finally, we apply these results and the techniques to the study of the dual complex for generalized log Calabi–Yau pairs, generalizing results of Kollár–Xu [Invent. Math. 205 (2016), 527–557] and Nakamura [Int. Math. Res. Not. IMRN 13 (2021), 9802–9833]. |
---|---|
ISSN: | 2050-5094 2050-5094 |
DOI: | 10.1017/fms.2023.25 |