Binary Quantization Analysis of Neural Networks Weights on MNIST Dataset
This paper considers the design of a binary scalar quantizer of Laplacian source and its application in compressed neural networks. The quantizer performance is investigated in a wide dynamic range of data variances, and for that purpose, we derive novel closed-form expressions. Moreover, we propose...
Gespeichert in:
Veröffentlicht in: | Elektronika ir elektrotechnika 2021-08, Vol.27 (4), p.55-61 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper considers the design of a binary scalar quantizer of Laplacian source and its application in compressed neural networks. The quantizer performance is investigated in a wide dynamic range of data variances, and for that purpose, we derive novel closed-form expressions. Moreover, we propose two selection criteria for the variance range of interest. Binary quantizers are further implemented for compressing neural network weights and its performance is analysed for a simple classification task. Good matching between theory and experiment is observed and a great possibility for implementation is indicated. |
---|---|
ISSN: | 1392-1215 2029-5731 |
DOI: | 10.5755/j02.eie.28881 |