Toughening of ZrB2-based composites with in-situ synthesized ZrC from ZrO2 and graphite precursors
ZrB2 matrix composites toughened with in-situ formed ZrC were fabricated by spark plasma sintering (SPS) utilizing ZrB2/ZrO2/graphite powder mixtures at 1900 °C for 7 min under 40 MPa load. Different amounts of graphite nano-flakes (3, 6, and 9 wt%) were added to ZrB2–20 vol% ZrO2 aiming in-situ for...
Gespeichert in:
Veröffentlicht in: | Journal of science. Advanced materials and devices 2021-03, Vol.6 (1), p.42-48 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ZrB2 matrix composites toughened with in-situ formed ZrC were fabricated by spark plasma sintering (SPS) utilizing ZrB2/ZrO2/graphite powder mixtures at 1900 °C for 7 min under 40 MPa load. Different amounts of graphite nano-flakes (3, 6, and 9 wt%) were added to ZrB2–20 vol% ZrO2 aiming in-situ formation of ZrC reinforcement. Clean ZrB2/ZrC interfaces were observed in the as-sintered microstructure, especially in the composite containing 6 wt% graphite. The reduction of ZrO2 with graphite, which formed ZrC, was progressed over a zirconium oxycarbide (ZrCxOy) intermediate. The hardness of the SPSed ZrB2-based composites was decreased with increasing the graphite content. However, the fracture toughness of the composites showed a reverse trend. By adjusting the graphite content to 6 wt%, excellent control of microstructure could be achieved for the prepared composites with a higher amount of ZrC and lower content of other unfavorable phases. It was finally found that achieving the optimum microstructure of the composite could improve its mechanical performance, and provides a hardness of 17.3 GPa and fracture toughness of 5.0 MPa m1/2. |
---|---|
ISSN: | 2468-2179 2468-2179 |
DOI: | 10.1016/j.jsamd.2020.09.014 |