Synthesis of Functionalized N-(4-Bromophenyl)furan-2-carboxamides via Suzuki-Miyaura Cross-Coupling: Anti-Bacterial Activities against Clinically Isolated Drug Resistant A. baumannii, K. pneumoniae, E. cloacae and MRSA and Its Validation via a Computational Approach
N-(4-bromophenyl)furan-2-carboxamide (3) was synthesized by the reaction furan-2-carbonyl chloride (1) and 4-bromoaniline (2) in the presence of Et3N in excellent yields of 94%. The carboxamide (3) was arylated by employing triphenylphosphine palladium as a catalyst and K3PO4 as a base to afford N-(...
Gespeichert in:
Veröffentlicht in: | Pharmaceuticals (Basel, Switzerland) Switzerland), 2022-07, Vol.15 (7), p.841 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | N-(4-bromophenyl)furan-2-carboxamide (3) was synthesized by the reaction furan-2-carbonyl chloride (1) and 4-bromoaniline (2) in the presence of Et3N in excellent yields of 94%. The carboxamide (3) was arylated by employing triphenylphosphine palladium as a catalyst and K3PO4 as a base to afford N-(4-bromophenyl)furan-2-carboxamide analogues (5a-i) in moderate to good yields (43–83%). Furthermore, we investigated the in vitro anti-bacterial activities of the respective compounds against clinically isolated drug-resistant bacteria A. baumannii, K. pneumoniae, E. cloacae and S. aureus. The molecule (3) was found to be the most effective activity against these bacteria, particularly NDM-positive bacteria A. baumannii as compared to various commercially available drugs. Docking studies and MD simulations further validated it, expressing the active site and molecular interaction stability. |
---|---|
ISSN: | 1424-8247 1424-8247 |
DOI: | 10.3390/ph15070841 |