Reduced ice number concentrations in contrails from low-aromatic biofuel blends

Sustainable aviation fuels can reduce contrail ice numbers and radiative forcing by contrail cirrus. We measured apparent ice emission indices for fuels with varying aromatic content at altitude ranges of 9.1–9.8 and 11.4–11.6 km. Measurement data were collected during the ECLIF II/NDMAX flight expe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmospheric chemistry and physics 2021-11, Vol.21 (22), p.16817-16826
Hauptverfasser: Bräuer, Tiziana, Voigt, Christiane, Sauer, Daniel, Kaufmann, Stefan, Hahn, Valerian, Scheibe, Monika, Schlager, Hans, Huber, Felix, Le Clercq, Patrick, Moore, Richard H, Anderson, Bruce E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sustainable aviation fuels can reduce contrail ice numbers and radiative forcing by contrail cirrus. We measured apparent ice emission indices for fuels with varying aromatic content at altitude ranges of 9.1–9.8 and 11.4–11.6 km. Measurement data were collected during the ECLIF II/NDMAX flight experiment in January 2018. The fuels varied in both aromatic quantity and type. Between a sustainable aviation fuel blend and a reference fuel Jet A-1, a maximum reduction in apparent ice emission indices of 40 % was found. We show vertical ice number and extinction distributions for three different fuels and calculate representative contrail optical depths. Optical depths of contrails (0.5–3 min in age) were reduced by 40 % to 52 % for a sustainable aviation fuel compared to the reference fuel. Our measurements suggest that sustainable aviation fuels result in reduced ice particle numbers, extinction coefficients, optical depth and climate impact from contrails.
ISSN:1680-7324
1680-7316
1680-7324
DOI:10.5194/acp-21-16817-2021