Dynamic Shannon Performance in a Multiobjective Particle Swarm Optimization
Particle swarm optimization (PSO) is a search algorithm inspired by the collective behavior of flocking birds and fishes. This algorithm is widely adopted for solving optimization problems involving one objective. The evaluation of the PSO progress is usually measured by the fitness of the best part...
Gespeichert in:
Veröffentlicht in: | Entropy (Basel, Switzerland) Switzerland), 2019-08, Vol.21 (9), p.827 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Particle swarm optimization (PSO) is a search algorithm inspired by the collective behavior of flocking birds and fishes. This algorithm is widely adopted for solving optimization problems involving one objective. The evaluation of the PSO progress is usually measured by the fitness of the best particle and the average fitness of the particles. When several objectives are considered, the PSO may incorporate distinct strategies to preserve nondominated solutions along the iterations. The performance of the multiobjective PSO (MOPSO) is usually evaluated by considering the resulting swarm at the end of the algorithm. In this paper, two indices based on the Shannon entropy are presented, to study the swarm dynamic evolution during the MOPSO execution. The results show that both indices are useful for analyzing the diversity and convergence of multiobjective algorithms. |
---|---|
ISSN: | 1099-4300 1099-4300 |
DOI: | 10.3390/e21090827 |