Machine Learning Spectroscopy Using a 2-Stage, Generalized Constituent Contribution Protocol

A corrected group contribution (CGC)-molecule contribution (MC)-Bayesian neural network (BNN) protocol for accurate prediction of absorption spectra is presented. Upon combination of BNN with CGC methods, the full absorption spectra of various molecules are afforded accurately and efficiently-by usi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Research (Washington) 2023, Vol.6, p.0115-0115
Hauptverfasser: Fan, Jinming, Qian, Chao, Zhou, Shaodong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A corrected group contribution (CGC)-molecule contribution (MC)-Bayesian neural network (BNN) protocol for accurate prediction of absorption spectra is presented. Upon combination of BNN with CGC methods, the full absorption spectra of various molecules are afforded accurately and efficiently-by using only a small dataset for training. Here, with a small training sample (1,000 samples to ensure the accuracy of prediction. Furthermore, with
ISSN:2639-5274
2639-5274
DOI:10.34133/research.0115