Differential proteomics between unhatched male and female egg yolks reveal the molecular mechanisms of sex-allocation and sex-determination in chicken

There is a huge demand to identify the sex of unhatched fertilized eggs for laying industry and to understand the differences between male and female eggs as early as possible. Then the molecular mechanisms of sex determination and sex allocation in chicken were revealed. Therefore, TMT proteomic wa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Poultry science 2022-07, Vol.101 (7), p.101906-101906, Article 101906
Hauptverfasser: Xiang, Xiaole, Yu, Zhuosi, Liu, Yongle, Huang, Yiqun, Wang, Jingjing, Chen, Lei, Ma, Meihu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:There is a huge demand to identify the sex of unhatched fertilized eggs for laying industry and to understand the differences between male and female eggs as early as possible. Then the molecular mechanisms of sex determination and sex allocation in chicken were revealed. Therefore, TMT proteomic was applied to characterize the variation of molecular matrix between unhatched male and female egg yolks. A total of 411 proteins were identified and 35 differentially expressed proteins (DEPs), including 375332005, 015809562, 763550308 (upregulated, UPs) and 1337178851, 89000557, 89000581 (downregulated, DPs), etc. were confirmed between them. Gene ontology analyses showed that DEPs were mainly involved in response to stimulus, distributed in the extracellular region and participated in binding; KEGG analyses showed that few DPs were participated in cell growth and death, transport and catabolism, signaling molecules, interaction and were enriched in ubiquitin mediated proteolysis, endocytosis, ferroptosis, etc. metabolic pathways. Moreover, most of the DEPs and related metabolic pathways were associated with sex hormones. More importantly, this study supports maternal sex-allocation theory and extends our understanding of the molecular mechanism of sex determination and differentiation in avian. Which also provides a powerful evidence for ovo sexing of unhatched fertilized domestic chicken eggs by nondestructive approach and will be of great significance to eggs processing and production.
ISSN:0032-5791
1525-3171
DOI:10.1016/j.psj.2022.101906