Storage and Upgrading of Biogas by Physicochemical Purification in a Sudano-Sahelian Context

The global energy trends are currently dominated by a massive use of fossil non-renewable energy sources which are progressively depleting. In this way, the production of second-generation biogas production from organic wastes by the dark fermentation process offers, therefore, an attractive solutio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2021-09, Vol.14 (18), p.5855
Hauptverfasser: Djomdi, Mintsop Nguela, Leonel Junior, Bakari, Hamadou, Fadimatou, Hamadou, Christophe, Gwendoline, Michaud, Philippe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The global energy trends are currently dominated by a massive use of fossil non-renewable energy sources which are progressively depleting. In this way, the production of second-generation biogas production from organic wastes by the dark fermentation process offers, therefore, an attractive solution to diversify the present energy mix. The development of biogas production units has led to an increase in the quantity of biomethane, but it contains impurities. A biomethane purification and storage system was developed in this work to improve the quality of this biofuel. Solutions were first developed to capture carbon dioxide, hydrogen sulfide, water, and volatile organic compounds found in the initial biogas. These solutions were based on a system of purification made up of water absorption reactions and iron oxide, activated charcoal, and steel wool adsorption. Thus, the biomethane obtained after purification has been stored in an inflatable balloon before being compressed into a refrigerant bottle of R134a. The treatment system was used to release a biogas with 95 % biomethane and a law heating value (LHV) of 54 MJ/kg after purification. It also emerges that purification of 2 m3 of biogas requires 0.15 m3 of water at 20oC to produce 1.4 m3 of biomethane. This biomethane can meet an energy demand of 1624 Wh or 0.2 m3 of daily biomethane requirements. The system as a whole can allow customers with a biodigester to produce their own energy (cooking or electric) while reducing the production of green-house gases in the atmosphere.
ISSN:1996-1073
1996-1073
DOI:10.3390/en14185855