Genome Analysis of Vallitalea guaymasensis Strain L81 Isolated from a Deep-Sea Hydrothermal Vent System
strain L81 , recently isolated from a black smoker biofilm at the Loki’s Castle hydrothermal vent field, was previously described as a mesophilic, obligately anaerobic heterotroph able to ferment carbohydrates, peptides, and aliphatic hydrocarbons. The strain was classified as a new genus within the...
Gespeichert in:
Veröffentlicht in: | Microorganisms (Basel) 2018-07, Vol.6 (3), p.63 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | strain L81
, recently isolated from a black smoker biofilm at the Loki’s Castle hydrothermal vent field, was previously described as a mesophilic, obligately anaerobic heterotroph able to ferment carbohydrates, peptides, and aliphatic hydrocarbons. The strain was classified as a new genus within the family
. Herein, its genome is analyzed and
is reassigned to the genus
as a new strain of
, designated
strain L81. The 6.4 Mbp genome contained 5651 protein encoding genes, whereof 4043 were given a functional prediction. Pathways for fermentation of mono-saccharides, di-saccharides, peptides, and amino acids were identified whereas a complete pathway for the fermentation of
-alkanes was not found. Growth on carbohydrates and proteinous compounds supported methane production in co-cultures with
. Multiple confurcating hydrogen-producing hydrogenases, a putative bifurcating electron-transferring flavoprotein—butyryl-CoA dehydrogenase complex, and a Rnf-complex form a basis for the observed hydrogen-production and a putative reverse electron-transport in
strain L81. Combined with the observation that
-alkanes did not support growth in co-cultures with
, it seemed more plausible that the previously observed degradation patterns of crude-oil in strain L81 are explained by unspecific activation and may represent a detoxification mechanism, representing an interesting ecological function. Genes encoding a capacity for polyketide synthesis, prophages, and resistance to antibiotics shows interactions with the co-occurring microorganisms. This study enlightens the function of the fermentative microorganisms from hydrothermal vents systems and adds valuable information on the bioprospecting potential emerging in deep-sea hydrothermal systems. |
---|---|
ISSN: | 2076-2607 2076-2607 |
DOI: | 10.3390/microorganisms6030063 |