Evaluating the Multidimensional Stability of Regional Ecosystems Using the LandTrendr Algorithm
Stability is a key characteristic for understanding ecosystem processes and evolution. However, research on the stability of complex ecosystems often faces limitations, such as reliance on single parameters and insufficient representation of continuous changes. This study developed a multidimensiona...
Gespeichert in:
Veröffentlicht in: | Remote sensing (Basel, Switzerland) Switzerland), 2024-10, Vol.16 (20), p.3762 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Stability is a key characteristic for understanding ecosystem processes and evolution. However, research on the stability of complex ecosystems often faces limitations, such as reliance on single parameters and insufficient representation of continuous changes. This study developed a multidimensional stability assessment system for regional ecosystems based on disturbances. Focusing on the lower reaches of the Yellow River Basin (LR-YRB), we integrated the remote sensing ecological index (RSEI) with texture structural parameters, and applied the Landsat-based detection of trends in disturbance and recovery (LandTrendr) algorithm to analyze the continuous changes in disturbances and recovery from 1986 to 2021, facilitating the quantification and evaluation of resistance, resilience, and temporal stability. The results showed that 72.27% of the pixels experienced 1–9 disturbances, indicating the region’s sensitivity to external factors. The maximum disturbances primarily lasted 2–3 years, with resistance and resilience displaying inverse spatial patterns. Over the 35-year period, 61.01% of the pixels exhibited moderate temporal stability. Approximately 59.83% of the pixels recovered or improved upon returning to pre-disturbance conditions after maximum disturbances, suggesting a strong recovery capability. The correlation among stability dimensions was low and influenced by disturbance intensity, underscoring the necessity for a multidimensional assessment of regional ecosystem stability based on satellite remote sensing. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs16203762 |