Some aspects on geometric and matrix work-hardening characteristics of sintered cold forged copper alloy preforms

Powder metallurgy (P/M) material subjected to plastic deformation results into densification, however the extended deformation would not only enhance the densification also supplements the strain hardening. Unlike fully dense material that would only undergo strain hardening while plastic deformatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials research (São Carlos, São Paulo, Brazil) São Paulo, Brazil), 2014-01, Vol.17 (1), p.196-202
Hauptverfasser: Rajeshkannan, A, Rengamani, Devi S, Sharma, Alok
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Powder metallurgy (P/M) material subjected to plastic deformation results into densification, however the extended deformation would not only enhance the densification also supplements the strain hardening. Unlike fully dense material that would only undergo strain hardening while plastic deformation, the P/M material leads to pore closure as well; this phenomenon complicates the work hardening mechanism. The present study revealed that both strain and density configures strengthening of P/M preform, which respectively termed as matrix and geometric work hardening. An attempt has been made to delineate some aspects of work hardening behaviour with the influence of different aspect ratios of sintered and cold deformed copper alloy preforms. The preforms were initially prepared through conventional P/M route and finally subjected to cold upsetting under dry friction condition. A statistical analysis has also been introduced to study the quantitative impact of strain and density in the presence of aspect ratio on work hardening rate characteristics.
ISSN:1516-1439
1980-5373
1980-5373
DOI:10.1590/S1516-14392013005000176