Geometrical Optimization and Transverse Thermoelectric Performances of Fe/Bi2Te2.7Se0.3 Artificially Tilted Multilayer Thermoelectric Devices

Transverse thermoelectric performance of the artificially tilted multilayer thermoelectric device (ATMTD) is very difficult to be optimized, due to the large degree freedom in device design. Herein, an ATMTD with Fe and Bi2Te2.7Se0.3 (BTS) materials was proposed and fabricated. Through high-throughp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Micromachines (Basel) 2022-01, Vol.13 (2), p.233
Hauptverfasser: Zhou, Hongyu, Liu, Huang, Qian, Guoping, Yu, Huanan, Gong, Xiangbing, Li, Xi, Zheng, Jianlong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Transverse thermoelectric performance of the artificially tilted multilayer thermoelectric device (ATMTD) is very difficult to be optimized, due to the large degree freedom in device design. Herein, an ATMTD with Fe and Bi2Te2.7Se0.3 (BTS) materials was proposed and fabricated. Through high-throughput calculation of Fe/BTS ATMTD, a maximum of calculated transverse thermoelectric figure of merit of 0.15 was obtained at a thickness ratio of 0.49 and a tilted angle of 14°. For fabricated ATMTD, the whole Fe/BTS interface is closely connected with a slight interfacial reaction. The optimizing Fe/BTS ATMTD with 12 mm in length, 6 mm in width and 4 mm in height has a maximum output power of 3.87 mW under a temperature difference of 39.6 K. Moreover the related power density per heat-transfer area reaches 53.75 W·m−2. This work demonstrates the performance of Fe/BTS ATMTD, allowing a better understanding of the potential in micro-scaled devices.
ISSN:2072-666X
2072-666X
DOI:10.3390/mi13020233