First-order relativistic hydrodynamics is stable

A bstract We study linearized stability in first-order relativistic viscous hydrodynamics in the most general frame. There is a region in the parameter space of transport coefficients where the perturbations of the equilibrium state are stable. This defines a class of stable frames, with the Landau-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2019-10, Vol.2019 (10), p.1-26, Article 34
1. Verfasser: Kovtun, Pavel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bstract We study linearized stability in first-order relativistic viscous hydrodynamics in the most general frame. There is a region in the parameter space of transport coefficients where the perturbations of the equilibrium state are stable. This defines a class of stable frames, with the Landau-Lifshitz frame falling outside the class. The existence of stable frames suggests that viscous relativistic fluids may admit a sensible hydrodynamic description in terms of temperature, fluid velocity, and the chemical potential only, i.e. in terms of the same hydrodynamic variables as non-relativistic fluids. Alternatively, it suggests that the Israel-Stewart and similar constructions may be unnecessary for a sensible relativistic hydrodynamic theory.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP10(2019)034