First-order relativistic hydrodynamics is stable
A bstract We study linearized stability in first-order relativistic viscous hydrodynamics in the most general frame. There is a region in the parameter space of transport coefficients where the perturbations of the equilibrium state are stable. This defines a class of stable frames, with the Landau-...
Gespeichert in:
Veröffentlicht in: | The journal of high energy physics 2019-10, Vol.2019 (10), p.1-26, Article 34 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A
bstract
We study linearized stability in first-order relativistic viscous hydrodynamics in the most general frame. There is a region in the parameter space of transport coefficients where the perturbations of the equilibrium state are stable. This defines a class of stable frames, with the Landau-Lifshitz frame falling outside the class. The existence of stable frames suggests that viscous relativistic fluids may admit a sensible hydrodynamic description in terms of temperature, fluid velocity, and the chemical potential only, i.e. in terms of the same hydrodynamic variables as non-relativistic fluids. Alternatively, it suggests that the Israel-Stewart and similar constructions may be unnecessary for a sensible relativistic hydrodynamic theory. |
---|---|
ISSN: | 1029-8479 1029-8479 |
DOI: | 10.1007/JHEP10(2019)034 |