Machine learning with clinical and intraoperative biosignal data for predicting postoperative delirium after cardiac surgery

Early identification of patients at high risk of delirium is crucial for its prevention. Our study aimed to develop machine learning models to predict delirium after cardiac surgery using intraoperative biosignals and clinical data. We introduced a novel approach to extract relevant features from co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:iScience 2024-06, Vol.27 (6), p.109932-109932, Article 109932
Hauptverfasser: Han, Changho, Kim, Hyun Il, Soh, Sarah, Choi, Ja Woo, Song, Jong Wook, Yoon, Dukyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Early identification of patients at high risk of delirium is crucial for its prevention. Our study aimed to develop machine learning models to predict delirium after cardiac surgery using intraoperative biosignals and clinical data. We introduced a novel approach to extract relevant features from continuously measured intraoperative biosignals. These features reflect the patient’s overall or baseline status, the extent of unfavorable conditions encountered intraoperatively, and beat-to-beat variability within the data. We developed a soft voting ensemble machine learning model using retrospective data from 1,912 patients. The model was then prospectively validated with data from 202 additional patients, achieving a high performance with an area under the receiver operating characteristic curve of 0.887 and an accuracy of 0.881. According to the SHapley Additive exPlanation method, several intraoperative biosignal features had high feature importance, suggesting that intraoperative patient management plays a crucial role in preventing delirium after cardiac surgery. [Display omitted] •Extracted features from biosignals to model hemodynamic fluctuations during surgery•Intraoperative biosignal features had high feature importance in the ML models•Highlighted the importance of intraoperative patient management•Highlighted the importance of high-resolution biosignal data in predictive modeling Bioinformatics; Machine learning
ISSN:2589-0042
2589-0042
DOI:10.1016/j.isci.2024.109932