Comparative Study of a Series of 99mTc(CO)3 Mannosylated Dextran Derivatives for Sentinel Lymph Node Detection

Sentinel lymph node detection (SLND) is rapidly entering common practice in the management of patients with tumors. The introduction of mannose molecules to 99mTc-labeled dextrans, so far, showed that the sentinel node could trap these agents due to their recognition by the mannose receptors of lymp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2021-08, Vol.26 (16), p.4797
Hauptverfasser: Papasavva, Afroditi, Shegani, Antonio, Kiritsis, Christos, Roupa, Ioanna, Ischyropoulou, Myrto, Makrypidi, Konstantina, Pilatis, Irineos, Loudos, George, Pelecanou, Maria, Papadopoulos, Minas, Pirmettis, Ioannis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sentinel lymph node detection (SLND) is rapidly entering common practice in the management of patients with tumors. The introduction of mannose molecules to 99mTc-labeled dextrans, so far, showed that the sentinel node could trap these agents due to their recognition by the mannose receptors of lymph node macrophages. The current study aimed to synthesize, characterize, and biologically evaluate a series of mannosylated dextran derivatives labeled with 99mTc for potential use in SLND. The compounds were designed to have a dextran with a molecular weight of 10–500 kDa as a backbone, S-derivatized cysteines, efficient SNO chelators, and mannose moieties for binding to mannose receptors. They were successfully synthesized, thoroughly characterized using NMR techniques, and labeled with the fac-[99mTc(CO)3]+ synthon. Labeling with high yields and radiochemical purities was achieved with all derivatives. In vivo biodistribution and imaging studies demonstrated high uptake in the first lymph node and low uptakes in the following node and confirmed the ability to visualize the SLN. Among the compounds studied, 99mTc-D75CM demonstrated the most attractive biological features, and in combination with the high radiochemical yield and stability of the compound, its further evaluation as a new radiopharmaceutical for sentinel lymph node detection was justified.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules26164797