Generating bicubic B-spline surfaces by a sixth order PDE

As the solutions of partial differential equations (PDEs), PDE surfaces provide an effective way for physical-based surface design in surface modeling. The bicubic B-spline surface is a useful tool for surface modeling in computer aided geometric design (CAGD). In this paper, we present a method for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIMS Mathematics 2021-01, Vol.6 (2), p.1677-1694
Hauptverfasser: Wu, Yan, Zhu, Chun-Gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As the solutions of partial differential equations (PDEs), PDE surfaces provide an effective way for physical-based surface design in surface modeling. The bicubic B-spline surface is a useful tool for surface modeling in computer aided geometric design (CAGD). In this paper, we present a method for generating bicubic B-spline surfaces with the uniform knots and the quasi-uniform knots from the sixth order PDEs. From the given boundary condition, based on the cubic B-spline basis representation and the PDE mask, the resulting bicubic B-spline surface can be generated uniquely. The boundary condition is more flexible and can be applied for curvature-continuous surface design, surface blending and hole filling. Some representative examples show the effectiveness of the presented method. Keywords: bicubic B-spline surfaces; sixth order PDE; PDE surfaces Mathematics Subject Classification: 65D07, 65D17
ISSN:2473-6988
2473-6988
DOI:10.3934/math.2021099