Integrative Analysis of Whole Genome Sequencing and Phenotypic Resistance Toward Prediction of Trimethoprim-Sulfamethoxazole Resistance in Staphylococcus aureus

As whole genome sequencing is becoming more accessible and affordable for clinical microbiological diagnostics, the reliability of genotypic antimicrobial resistance (AMR) prediction from sequencing data is an important issue to address. Computational AMR prediction can be performed at multiple leve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in microbiology 2021-01, Vol.11, p.607842-607842
Hauptverfasser: Nurjadi, Dennis, Zizmann, Elfi, Chanthalangsy, Quan, Heeg, Klaus, Boutin, Sébastien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As whole genome sequencing is becoming more accessible and affordable for clinical microbiological diagnostics, the reliability of genotypic antimicrobial resistance (AMR) prediction from sequencing data is an important issue to address. Computational AMR prediction can be performed at multiple levels. The first-level approach, such as simple AMR search relies heavily on the quality of the information fed into the database. However, AMR due to mutations are often undetected, since this is not included in the database or poorly documented. Using co-trimoxazole (trimethoprim-sulfamethoxazole) resistance in , we compared single-level and multi-level analysis to investigate the strengths and weaknesses of both approaches. The results revealed that a single mutation in the AMR gene on the nucleotide level may produce false positive results, which could have been detected if protein sequence analysis would have been performed. For AMR predictions based on chromosomal mutations, such as the gene of , natural genetic variations should be taken into account to differentiate between variants linked to genetic lineage (MLST) and not over-estimate the potential resistant variants. Our study showed that careful analysis of the whole genome data and additional criterion such as lineage-independent mutations may be useful for identification of mutations leading to phenotypic resistance. Furthermore, the creation of reliable database for point mutations is needed to fully automatized AMR prediction.
ISSN:1664-302X
1664-302X
DOI:10.3389/fmicb.2020.607842